
Inventing Life Insurance Experience Data
Philip Adams

Dabbling in the Dark Arts for Clicks

Knowing how to create fake believable data is at once valuable and suspicious. On the one hand,
it shows a deep understanding of the processes and nuances of the data you are simulating.
On the other hand, it shows an understanding for evil. For my own sake, I would like to think
that I am too honest for the latter. If I ever were to fake results for a real situation, it probably
means that I am suffering mental illness and need to be committed.

But, life insurance datasets are impossible to find. So I will make one up. Turns out, it isn’t
easy getting something believable off the ground. Thus, the risk of inspiring another Billion
Dollar Bubble movie is low.

Approach

Here I use R. I will generate a census of lives including deaths and lapse information. Many
of the features of this data are based on my experiences working with life insurance data over
the years.

I have done this in Python for the sake of my own education and to compare methods. I
discuss the issues of using Python in my blog.

Preparation

library(data.table)
library(data.table)
library(plyr)
library(tidyverse)
library(arrow)
library(parallel)

1

library(rvinecopulib)
library(patchwork)
library(GGally)

RNGkind("L'Ecuyer-CMRG")

sILECPath <- "/workspace/Projects/ILEC/VBT/Data/ilecdata_20240119"
nPolicyCensusSize <- 2000000
arrIssueYearRange <- 2041:2054

set.seed(0xBEEF)

Low Face is 90% of these, Males are 120% of these
fLowFaceFactorTrue <- 0.9
fMaleFactorTrue <- 1.2

Building a Source Distribution

I build a source distribution based on the ILEC data from 2011-2017. This uses the distribution
of risks for term business in duration 1 issued under a four-class preferred system, by issue
age, sex, and face amount. I weight by policies exposed. To expand by issue year, I create a
fake issue year table covering our futuristic issue year along with relative proportion by issue
year. The relative proportion is used to weight the policies exposed from the prior step. This
is meant to simulate sales growth.

ilec_dataset <- arrow::open_dataset(
sources=sILECPath,
format="parquet"

)

Extract the data
ilec_dataset %>%
filter(Insurance_Plan == "Term" &

Duration == 1 &
Issue_Age >= 18 &
Issue_Age <= 70 &
Number_of_Pfd_Classes == "4" &
Observation_Year >= 2011 &

2

Observation_Year <= 2017) %>%
group_by(Sex,Issue_Age,Face_Amount_Band) %>%
summarize(Policies_Exposed=sum(Policies_Exposed)) %>%
collect() %>%
data.table() ->
src_distribution

Regroup the face amounts to low and high face
src_distribution %>%
mutate(Face_Group=fct_collapse(Face_Amount_Band,

Low_Face=c("01: 0 - 9,999",
"02: 10,000 - 24,999",
"03: 25,000 - 49,999",
"04: 50,000 - 99,999",
"05: 100,000 - 249,999",
"06: 250,000 - 499,999"),

other_level="High_Face")
) %>%
group_by(Sex,Issue_Age,Face_Group) %>%
summarize(Policies_Exposed=sum(Policies_Exposed)) %>%
arrange(Sex,Issue_Age,Face_Group) %>%
data.table() ->
src_distribution

Expand the issue year dimension and adjust the exposure per year
src_distribution %>%
cross_join(

data.table(Issue_Year=arrIssueYearRange,
Proportion=seq(.8,1.3,length=length(arrIssueYearRange)))

) %>%
mutate(Policies_Exposed=Policies_Exposed*Proportion) %>%
select(-Proportion) ->
src_distribution

head(src_distribution)

Sex Issue_Age Face_Group Policies_Exposed Issue_Year
<char> <int> <fctr> <num> <int>

1: F 18 Low_Face 1662.965 2041
2: F 18 Low_Face 1742.915 2042
3: F 18 Low_Face 1822.865 2043
4: F 18 Low_Face 1902.815 2044

3

5: F 18 Low_Face 1982.766 2045
6: F 18 Low_Face 2062.716 2046

Building a Policy Census

To sample a census, I randomly sample rows from the source distribution table. Then I
construct random issue dates within a calendar year. While the day of the month is random,
the month is weighted toward the end of the year and away from the beginning of the year.
Many companies will create sales incentives that increase sales at the end of the year, often at
the expense of sales in the first quarter.

Sample the source distribution to build a policy listing
policy_pop <- src_distribution[
sample.int(n=nrow(src_distribution),

size=nPolicyCensusSize,
replace=T,
prob=src_distribution$Policies_Exposed),

.(Sex,Issue_Age,Face_Group,Issue_Year)
]

Set an ID
policy_pop[,PolID:=1:nrow(.SD)]

Issue Date
Create a table of months and days in a standard year, and then add a proportion
data.table(DayOfYear=1:365) %>%
mutate(DateTemp = ymd(20101231) %m+% days(DayOfYear),

Month=month(DateTemp),
Day=day(DateTemp),
Proportion=1/365) %>%

select(Month,Day,Proportion) ->
issue_days

issue_days[Month==1,Proportion:=Proportion*.5]
issue_days[Month==2,Proportion:=Proportion/.7]
issue_days[Month==11,Proportion:=Proportion/.7]
issue_days[Month==12,Proportion:=Proportion/.5]

Sample a random day
policy_pop <- cbind(policy_pop,

issue_days[

4

sample.int(n=nrow(issue_days),
size=nPolicyCensusSize,
replace=T,
prob=issue_days$Proportion),

.(Month,Day)
]

)

... and create the issue date
policy_pop %>%
mutate(Issue_Date=ymd(paste0(Issue_Year," ",Month," ",Day))) %>%
select(-Month,-Day) ->
policy_pop

Face Amounts
Low face is 100-450K spaced at 50K intervals
High Face is 500K - 2M spaced at 100K intervals
policy_pop[Face_Group=="Low_Face",

Face_Amount:=1000*sample(x=seq(100,450,50),
size=nrow(.SD),
replace=T)

]

policy_pop[Face_Group=="High_Face",
Face_Amount:=1000*sample(x=seq(500,2000,100),

size=nrow(.SD),
replace=T)

]

Set a premium mode based on reasonable real world proportions
policy_pop[,prem_mode:= sample(c("A","Q","M"),

size=nrow(.SD),
prob=c(.04,.01,.95),
replace=T)]

head(policy_pop)

Sex Issue_Age Face_Group Issue_Year PolID Issue_Date Face_Amount
<char> <int> <fctr> <int> <int> <Date> <num>

1: F 37 Low_Face 2054 1 2054-08-28 200000
2: M 34 Low_Face 2049 2 2049-03-24 100000
3: F 38 Low_Face 2052 3 2052-02-16 100000

5

4: M 34 High_Face 2052 4 2052-09-22 1700000
5: M 47 High_Face 2043 5 2043-10-18 900000
6: M 62 Low_Face 2043 6 2043-11-14 300000

prem_mode
<char>

1: M
2: M
3: M
4: M
5: M
6: M

Simulate Preferred Attributes Using Vine Copulas

To simulate a believable distribution of preferred criteria, I use vine copulas. The associated
blog post explains these at a high level. Here, we model Bot Mass Index (BMI), Oil Pressure,
and Oil Viscosity using a copula where BMI is dependent on each of oil pressure and oil
viscosity, and pressure and viscosity are dependent given BMI. The analogy to Body Mass
Index, blood pressure, and cholesterol might be coincidental.

The dependence of BMI to the others is a BB7 copula with parameters 1.5 and 3. The
dependence of oil pressure and viscosity given BMI is Gaussian with correlatio 0.4.

Create synthetic preferred distributions
BMI, oil pressure, and oil viscosity are modeled with a copula, which is
necessarily a cvine (3 variables)
pref.vine <- vinecop_dist(
pair_copulas = list(

list(
bicop_dist("bb7",180,c(1.5,3)),
bicop_dist("bb7",180,c(1.5,3))

),
list(bicop_dist("gaussian",0,.4))

),
structure = cvine_structure(1:3)

)

pref.vine$names <- c("OilPressure","OilViscosity","BMI")

Simulate the collectino of dependent uniform random variates
rvinecop(n=nPolicyCensusSize,

pref.vine,

6

cores=8) ->
pref.samples

pref.samples %>%
as.data.table() %>%
rename(

BMI_u=BMI,
OilViscosity_u=OilViscosity,
OilPressure_u=OilPressure

) -> pref.samples

policy_pop %>%
cbind(pref.samples) ->
policy_pop

It helps to visualize the vine and its distributions, and they can be plotted.

Dependency Structure

plot(pref.vine,tree=1:2, edge_labels = "family_tau",var_names = "legend")

7

bb7(0.62)

bb7(0.62)

1

2

3

Tree 1

1 = OilPressure, 2 = OilViscosity, 3 = BMI

gaussian(0.26)

1,3

2,3

Tree 2

1 = OilPressure, 2 = OilViscosity, 3 = BMI

Contour plots of bivariate copulas

It is easy to see here the strong upper tail dependence. The second level has some correlation,
but the expectation is that most of the dependence will arise from BMI. Note that the Gaussian
has no tail dependence. Also note that the contour plots assume normal margins.

contour(pref.vine)

8

OilPressure,OilViscosity;BMI

OilPressure,BMI OilViscosity,BMI

Convert Simulated Uniform Marginals to Native Distribution

The simulator function for the vine copula generates values with uniform margins, so they are
converted to the distributional scale we need.

• Each margin uses a gamma distribution.
• BMI for high face policies initially has mean 25 and variance 50.
• Oil pressure for high face policies initially has mean 30 and variance 20.
• Oil viscosity for high face policies initially has mean 20 and variance 20.
• Low face policies have mean 90% of high face, and males have mean 120% over females

(at 100%).
• Starting in 2046, the means increase by 1% per issue year.

9

High Face
BMI is gamma with mean 25 and variance 50
Oil Pressure is gamma with mean 30 and variance 20
Oil viscosity is gamma with mean 20 and variance 20

Low Face is 90% of these, Males are 120% of these
Starting in year 2046, apply 1% per issue year increase to all means
low_face_factor_true <- 0.9
male_factor_true <- 1.2

Essentiall the inverse of the gamma CDF, but since we are specifying
everything using the mean and variance, these have to be translated
to shape and scale
convert_marginal_to_gamma <- function(x, mean=1, variance=1, rounding=2) {
shape <- mean*mean/variance
scale <- variance/mean

round(qgamma(x,shape=shape,scale=scale),rounding)
}

policy_pop[,PrefMeanFactor:=ifelse(Sex=="Male",male_factor_true,1)*
ifelse(Face_Group=="Low_Face",low_face_factor_true,1)*
(1+pmax(0,Issue_Year-2045)/100)]

policy_pop[,
`:=`(
BMI=mapply(FUN=convert_marginal_to_gamma,

BMI_u,
25*PrefMeanFactor,
variance=50),

OilPressure=mapply(FUN=convert_marginal_to_gamma,
OilPressure_u,
30*PrefMeanFactor,
variance=20),

OilViscosity=mapply(FUN=convert_marginal_to_gamma,
OilViscosity_u,
20*PrefMeanFactor,
variance=20)

)]

10

policy_pop[,`:=`(OilViscosity_u=NULL,
OilPressure_u=NULL,
BMI_u=NULL,
PrefMeanFactor=NULL)]

head(policy_pop)

Sex Issue_Age Face_Group Issue_Year PolID Issue_Date Face_Amount
<char> <int> <fctr> <int> <int> <Date> <num>

1: F 37 Low_Face 2054 1 2054-08-28 200000
2: M 34 Low_Face 2049 2 2049-03-24 100000
3: F 38 Low_Face 2052 3 2052-02-16 100000
4: M 34 High_Face 2052 4 2052-09-22 1700000
5: M 47 High_Face 2043 5 2043-10-18 900000
6: M 62 Low_Face 2043 6 2043-11-14 300000

prem_mode BMI OilPressure OilViscosity
<char> <num> <num> <num>

1: M 23.46 29.74 13.58
2: M 23.71 26.15 16.28
3: M 26.27 31.65 21.88
4: M 31.88 35.67 23.90
5: M 18.64 27.39 13.62
6: M 13.64 25.06 15.13

A pairs plot shows off the result. There is quite a bit of correlation among criteria. In this
case, it’s linear correlation on the original scale.

ggpairs(policy_pop[sample.int(n=nPolicyCensusSize,size=100000,replace=T),
.(BMI,OilPressure,OilViscosity)]) +

theme_minimal()

11

Corr:

0.840***

Corr:

0.853***

Corr:

0.841***

BMI OilPressure OilViscosity

B
M

I
O

ilP
ressure

O
ilV

iscosity

20 40 60 80 20 30 40 50 10 20 30 40 50

0.00

0.02

0.04

20

30

40

50

10

20

30

40

50

Assign Preferred Factors

Based on made-up parameterizations based on real phenomena, I modeled the relative mortal-
ity risk for each of the preferred variables as

• BMI follows a j-curve where every 5 points of BMI increases mortality by 25%
• Oil viscosity and oil pressure follow u-curves modeled as overlaid j-curves

softplus <- function(x) {
log(1+exp(x))

}

12

Mortality factors for preferreds
policy_pop[,

`:=`(PrefFactor_BMI=exp(log(1.25)*(BMI-25)/5),
PrefFactor_Pressure=(exp(log(1.25)*

softplus(.25*(OilPressure-20)/1))+
exp(log(1.05)*

softplus(-1*(OilPressure-20)/1)))/
(1.05+1.25),

PrefFactor_Viscosity=(exp(log(1.25)*
softplus(0.6*(OilViscosity-30)/1))+

exp(log(1.05)*
softplus(-2*(OilViscosity-30)/1)))/

(1.05+1.25)
)]

The softplus unfortunately isn't automatically normalized
policy_pop[,

`:=`(PrefFactor_Viscosity=PrefFactor_Viscosity/mean(PrefFactor_Viscosity),
PrefFactor_Pressure=PrefFactor_Pressure/mean(PrefFactor_Pressure))]

policy_pop[,PrefFactor:=PrefFactor_BMI*PrefFactor_Pressure*PrefFactor_Viscosity]

Here are the curves for the relative risks for each of the preferred characteristics. The gamma
yields a heavy tail. These handful of cases will be declined.

policy_pop %>%
select(BMI, PrefFactor_BMI) %>%
distinct() %>%
ggplot(aes(x=BMI,y=PrefFactor_BMI)) +
geom_line() +
scale_color_viridis_d(name="Issue Year") +
scale_x_continuous(name="BMI") +
scale_y_continuous(name="Factor", labels=scales::percent) +
theme_minimal() -> p1

policy_pop %>%
select(OilPressure, PrefFactor_Pressure) %>%
distinct() %>%
ggplot(aes(x=OilPressure,y=PrefFactor_Pressure)) +
geom_line() +
scale_color_viridis_d(name="Issue Year") +

13

scale_x_continuous(name="Oil Pressure") +
scale_y_continuous(name="Factor", labels=scales::percent) +
theme_minimal() -> p2

policy_pop %>%
select(OilViscosity, PrefFactor_Viscosity) %>%
distinct() %>%
ggplot(aes(x=OilViscosity,y=PrefFactor_Viscosity)) +
geom_line() +
scale_color_viridis_d(name="Issue Year") +
scale_x_continuous(name="Oil Viscosity") +
scale_y_continuous(name="Factor", labels=scales::percent) +
theme_minimal() -> p3

p1 + p2 + p3

0%

250%

500%

750%

1 000%

1 250%

0 20 40 60 80
BMI

Fa
ct

or

100%

200%

300%

10 20 30 40 50 60
Oil Pressure

Fa
ct

or

200%

400%

600%

10 20 30 40 50
Oil Viscosity

Fa
ct

or

As a result of the increasing mean values of preferred variables, the distribution of preferred
relative risks increases and becomes more spread out over time.

14

policy_pop %>%
filter(Issue_Year %in% c(2045,2048,2051,2054) & PrefFactor <= 3) %>%
mutate(Issue_Year=factor(Issue_Year)) %>%
ggplot(aes(x=PrefFactor,color=Issue_Year)) +
geom_density(alpha=0.2) +
scale_color_viridis_d(name="Issue Year") +
scale_x_continuous(name="Preferred Relative Risk",labels=scales::percent) +
theme_minimal()

0.0

0.5

1.0

1.5

2.0

100% 200% 300%
Preferred Relative Risk

de
ns

ity

Issue Year

2045

2048

2051

2054

Define Preferred Classes

Preferred classes are defined based on old style cutoffs. It is unlikely that that will still be
used in the far future.

policy_pop[,
UW_Decision:="SUB"]

policy_pop[BMI <= 41 & OilPressure <= 41 & OilViscosity <= 32,
UW_Decision:="STD"]

policy_pop[UW_Decision == "SUB" & PrefFactor > 3,
UW_Decision := "DEC"]

15

policy_pop[,PrefClass:=3]
policy_pop[BMI <= 30 & OilPressure <= 35 & OilViscosity <= 25 &

UW_Decision == "STD",
PrefClass:=1]

policy_pop[BMI <= 33 & OilPressure <= 38 & OilViscosity <= 28 & PrefClass > 1 &
UW_Decision == "STD",

PrefClass:=2]

Simulate Deaths and Lapses

Simulation relies heavily on multicore computation. Sixteen cores can get through the mor-
tality simulation for 2,000,000 cases in approximately 10 minutes. Adjust your expectations
accordingly if you have different resources.

source("LoadAssumptions.R")

policy_pop[,
Death_Duration:=mcmapply(FUN=sample_death_duration,

Sex,
Issue_Age,
Issue_Date,
PrefFactor,
mc.cores = 16)]

policy_pop[,
Lapse_Duration:=mcmapply(FUN=sample_lapse_duration,

Face_Group,
mc.cores = 16)]

Compute Dates and Status

Deaths do not occur uniformly in a given policy year. As time passes, risk of death increases.
We simulated the policy year of death but not the day. We do so with a distribution of days
tipped toward the later part of the year. This is designed so that the likelihood of death on
day 365 is about 10% higher than on day 1.

Lapses occur uniformly through the year on a premium due date. This is not accurate in the
real world, but it is enough for this case study.

16

death.skew <- 1:365
death.skew <- (1+death.skew*.1/364-.05-.1/364)/365

policy_pop[,death_skew_days:= sample.int(365,
size=nrow(.SD),
replace=T,
prob = death.skew)]

policy_pop[,lapse_skew_months := sample.int(12,size=nrow(.SD),replace=T)]

policy_pop[,
Death_Date:=Issue_Date %m+% years(Death_Duration-1) %m+%
days(death_skew_days-1)]

policy_pop[prem_mode=="M",
Lapse_Date:=Issue_Date %m+% years(Lapse_Duration-1) %m+%
months(lapse_skew_months)]

policy_pop[prem_mode=="A",
Lapse_Date:=Issue_Date %m+% years(Lapse_Duration-1)]

policy_pop[prem_mode=="Q",
Lapse_Date:=Issue_Date %m+% years(Lapse_Duration-1) %m+%
months(3*(lapse_skew_months %% 4 + 1))]

policy_pop[,Status:="Active"]
policy_pop[Death_Date <= ymd(20531231) & Death_Date < Lapse_Date,

`:=`(Status="Death",Term_Date=Death_Date)]
policy_pop[Lapse_Date <= ymd(20531231) & Lapse_Date < Death_Date,

`:=`(Status="Lapsed",Term_Date=Lapse_Date)]

policy_pop[UW_Decision=="DEC",
`:=`(
Status="Not Issued",
Term_Date=NA

)]

Save the Work

arrow::write_parquet(x=policy_pop,
sink="policy_pop.parquet")

17

	Dabbling in the Dark Arts for Clicks
	Approach
	Preparation
	Building a Source Distribution
	Building a Policy Census
	Simulate Preferred Attributes Using Vine Copulas
	Dependency Structure
	Contour plots of bivariate copulas

	Convert Simulated Uniform Marginals to Native Distribution
	Assign Preferred Factors
	Define Preferred Classes
	Simulate Deaths and Lapses
	Compute Dates and Status
	Save the Work

