
Expanding Exposures
Philip Adams

2024-04-24

This document will show how to expand a list of policies that includes a termination date
into a listing of associated exposures, broken by calendar period and policy period. For our
purposes, we set both calendar and policy periods to be 12 months.

I only build an exposure basis for mortality. The “option” to exercise a claim can occur at any
time, so exposure is uniformly spread out.

For persistency for premiums payable on a due date, the option to stop payment is usually
only on a premium due date. Thus, the exposure is technically concentrated on that day. This
is handled separately from surrenders, which can occur at any time.

Setup

R

library(data.table)
library(arrow)
library(tidyverse)
library(parallel)
library(doParallel)
library(reticulate)

nPolicyCensusSize <- 2000000
arrIssueYearRange <- 2041:2054

study_start <- as.Date("2041-01-01")
study_end <- as.Date("2053-12-31")

pol_period_granularity <- 12 # months per policy period

1

cal_period_granularity <- 12 # months per calendar period

cal_yr_breaks <- (study_start %m+% days(-1)) %m+%
months(

cal_period_granularity*(1:(interval(study_start %m+% days(-1),study_end) %/%
months(cal_period_granularity)))

)

arrow::read_parquet(file="policy_pop.parquet") %>%
data.table() ->
policy_pop

policy_pop[,Prem_Mode_Months:=sapply(prem_mode,
FUN=\(x) switch(x,A=12,Q=3,M=1),
USE.NAMES=F)]

source('LoadAssumptions.R')

Python

nPolicyCensusSize = 2000000
arrIssueYearRange = range(2041,2055)

import pandas as pd
import pyarrow as pa
import pyarrow.dataset as ds
import pyarrow.parquet as pq
import numpy as np

from dateutil.relativedelta import *
from dateutil.rrule import *
from dateutil.parser import *
from datetime import *

import session_info

rng_seed = 0xBEEF
rng = np.random.default_rng(rng_seed)

studyStartDate = datetime(2041,1,1)

2

studyEndDate = datetime(2053,12,31)

pol_period_granularity = 12 # months per policy period
cal_period_granularity = 12 # months per calendar period

def months_between(date1, date2, exact=False):
months_bn = (date2.year - date1.year)*12 + date2.month - date1.month

if exact:
months_bn += date2.day/((date2 + relativedelta(day=31)).day) - \
date1.day/((date1 + relativedelta(day=31)).day)

return months_bn

studyStartDateMinus1 = studyStartDate + relativedelta(days=-1)
studyMonths = np.floor(months_between(studyStartDate, studyEndDate) / 12)

cal_yr_breaks = ([studyStartDate + relativedelta(days=-1,months=i)
for i in np.arange(start=1,stop=studyMonths + 1,step=1)*cal_period_granularity])

policy_pop = pq.read_table('policy_pop.parquet').to_pandas()

policy_pop['Prem_Mode_Months'] = policy_pop['prem_mode'].map({
'M' : 1,
'Q' : 3,
'A' : 12

})

policy_pop['Issue_Date'] = pd.to_datetime(policy_pop['Issue_Date'])
policy_pop['Term_Date'] = pd.to_datetime(policy_pop['Term_Date'])

policy_pop_sample = policy_pop.head(1000).copy()

The Exposure Building Function

First, we need to determine the upper and lower bounds of the study periods.

• Set the first date to be the later of the issue date and study start date.
• Set the last date to be the earlier of the termination date, if valid, and study end date.
• Calculate the full policy periods as the exact months between the issue date and last

date.

3

• Calculate the pre-study periods as the exact months between the issue date and the first
date.

R

.data %>%
mutate(

first_date=as.Date(
pmax({{.issue_date}},.exp_period_start)

),
last_date=as.Date(
pmin(replace_na({{.term_date}},.exp_period_end),.exp_period_end)

),
full_pol_periods = interval({{.issue_date}},last_date) /
months(.pol_period_granularity),

prestudy_pol_periods = interval({{.issue_date}},first_date) /
months(.pol_period_granularity)

) ->
.data

Python

policy_pop_sample['first_date'] = ([max([d,studyStartDate]) for d
in policy_pop_sample['Issue_Date']])

policy_pop_sample['last_date'] = ([min([d,studyEndDate]) for d in
policy_pop_sample['Term_Date'].fillna(studyEndDate)])

policy_pop_sample['full_pol_periods'] = policy_pop_sample.apply(lambda x: \
months_between(x['Issue_Date'],x['last_date'],True) / \
pol_period_granularity,axis=1)

policy_pop_sample['prestudy_pol_periods'] = policy_pop_sample.apply(lambda x: \
months_between(x['Issue_Date'],x['first_date'],True) / \
pol_period_granularity,axis=1)

policy_pop_sample

Sex Issue_Age ... full_pol_periods prestudy_pol_periods
0 F 37 ... -0.658602 0.0
1 M 34 ... 4.768817 0.0

4

2 F 38 ... 1.870690 0.0
3 M 34 ... 1.000000 0.0
4 M 47 ... 10.201613 0.0
..
995 M 32 ... 9.416667 0.0
996 M 52 ... 9.225806 0.0
997 M 46 ... 1.082258 0.0
998 M 32 ... 1.165143 0.0
999 F 41 ... 6.500000 0.0

[1000 rows x 30 columns]

Next, create the modal sequence for a policy. This is just a sequence of numbers which will
be cross-joined into the policy census to build out the mode-aversaries.

R

modal_sequence <- pol_period_granularity*as.numeric(
seq(to=.data[,ceiling(max(full_pol_periods))])

)
modal_sequence

Python

modal_sequence = pol_period_granularity*np.arange(1, \
np.ceil(policy_pop_sample['full_pol_periods'].max())+1, \

dtype=np.int32)
modal_sequence

array([12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156],
dtype=int32)

We have reached the part where we develop the frame of exposures. The expansion is carried
out in three parts:

1. Create the sequence of policy mode-aversaries and save the day before.
2. Add the termination dates.
3. Create the sequence of calendar period “anniversaries”.

5

4. Bind them all together. The foregoing dates become the exposure ending period
(exp_period_end).

5. Sort by policy ID and exposure ending period.
6. Set the field for exposure period start, exp_period_start, to the day after the exposure

period end of the prior record. If there is no prior record, set it to the first date.
7. Filter as needed at any appropriate point to ensure that the exposure periods are within

the pre-defined study start and end dates.

Policy Mode-aversaries

Steps for this stage:

1. Select only the needed columns.
2. Cross-join the modal sequence.
3. Filter out modes which aren’t in the study.
4. Align only to premium due date modes.
5. Set the ending experience period to be the day before the mode-aversary.
6. Select the needed columns, and store.

R

.data %>%
select({{.ID}},

prestudy_pol_periods,
full_pol_periods,
{{.prem_mode_months}},
{{.issue_date}},
first_date) %>%

cross_join(y=data.table(monthaversary=modal_sequence)) %>% # Modal cross-join
filter(monthaversary >= ceiling(prestudy_pol_periods*.pol_period_granularity) &

monthaversary <= floor(full_pol_periods*.pol_period_granularity)) %>%
filter(monthaversary %% {{.prem_mode_months}} == 0) %>%
mutate(exp_period_end = {{.issue_date}} %m+% months(monthaversary) %m+%

days(-1)) %>%
select({{.ID}},first_date,monthaversary,exp_period_end,{{.issue_date}}) ->
stage1a

6

Python

stage1a = (
policy_pop_sample[

['PolID','prestudy_pol_periods','full_pol_periods','Prem_Mode_Months', \
'Issue_Date','first_date']

].merge(
pd.DataFrame(data={'monthaversary' : modal_sequence}),
how='cross'
).query(

'monthaversary >= ceil(prestudy_pol_periods*@pol_period_granularity)'
).query('monthaversary <= floor(full_pol_periods*@pol_period_granularity)')
.query('monthaversary % Prem_Mode_Months == 0')

)

stage1a['exp_period_end'] = stage1a.apply(lambda x: x['Issue_Date'] + \
relativedelta(days=-1, months=x['monthaversary']),axis=1)

stage1a = stage1a[['PolID','first_date','monthaversary','exp_period_end','Issue_Date']]

stage1a

PolID first_date monthaversary exp_period_end Issue_Date
13 2 2049-03-24 12 2050-03-23 2049-03-24
14 2 2049-03-24 24 2051-03-23 2049-03-24
15 2 2049-03-24 36 2052-03-23 2049-03-24
16 2 2049-03-24 48 2053-03-23 2049-03-24
26 3 2052-02-16 12 2053-02-15 2052-02-16
...
12988 1000 2042-07-23 24 2044-07-22 2042-07-23
12989 1000 2042-07-23 36 2045-07-22 2042-07-23
12990 1000 2042-07-23 48 2046-07-22 2042-07-23
12991 1000 2042-07-23 60 2047-07-22 2042-07-23
12992 1000 2042-07-23 72 2048-07-22 2042-07-23

[3485 rows x 5 columns]

Terminating Records

Steps for this stage:

7

1. Filter only for actual terminations.
2. Restrict terminations only to those occurring in the study period.
3. Set the experience period end date to be the termination date.
4. Set the mode-aversary corresponding to this date.
5. Select only the needed columns, and store.

R

.data %>%
filter(!is.na({{.term_date}})) %>%
filter({{.term_date}} >= study_start & {{.term_date}} <= study_end) %>%
select({{.ID}},{{.issue_date}},first_date,{{.term_date}}) %>%
rename(exp_period_end={{.term_date}}) %>%
mutate(monthaversary=interval({{.issue_date}},exp_period_end) / months(1)) %>%
select({{.ID}},first_date,monthaversary,exp_period_end,{{.issue_date}}) ->
stage1b

Python

stage1b = (
policy_pop_sample.query('Term_Date == Term_Date')

.query('Term_Date >= @studyStartDate and Term_Date <= @studyEndDate')
)

stage1b = stage1b[['PolID','Issue_Date','first_date','Term_Date']]
stage1b = stage1b.rename(columns={'Term_Date':'exp_period_end'})
stage1b['monthaversary'] = [months_between(x,y,exact=True) for x,y in \
zip(stage1b['Issue_Date'],stage1b['exp_period_end'])]

stage1b

PolID Issue_Date first_date exp_period_end monthaversary
3 4 2052-09-22 2052-09-22 2053-09-22 12.000000
7 8 2043-11-29 2043-11-29 2048-10-29 58.968817
9 10 2044-09-22 2044-09-22 2045-08-22 10.976344
11 12 2052-11-25 2052-11-25 2053-10-25 10.973118
19 20 2047-06-29 2047-06-29 2048-06-29 12.000000
..
986 987 2047-12-25 2047-12-25 2048-03-25 3.000000

8

990 991 2050-10-08 2050-10-08 2050-11-08 1.008602
997 998 2049-09-12 2049-09-12 2050-10-12 12.987097
998 999 2047-06-17 2047-06-17 2048-08-17 13.981720
999 1000 2042-07-23 2042-07-23 2049-01-23 78.000000

[320 rows x 5 columns]

Calendar-Year Breaks

Steps for this stage:

1. Cross-join the calendar year breaks.
2. Filter only those occurring in the policy’s exposure window.
3. Set the corresponding modeaversary.
4. Select only the needed columns, and store.

R

.data %>%
cross_join(data.table(exp_period_end=.cal_yr_breaks)) %>%
filter(exp_period_end >= first_date &

exp_period_end <= last_date) %>%
mutate(monthaversary=interval({{.issue_date}},exp_period_end) / months(1)) %>%
select({{.ID}},first_date,monthaversary,exp_period_end,{{.issue_date}}) ->
stage1c

Python

stage1c = (
policy_pop_sample.merge(

pd.DataFrame(data={'exp_period_end' : cal_yr_breaks}),
how='cross'
).query(

'exp_period_end >= first_date and exp_period_end <= last_date'
)

)

stage1c['monthaversary'] = [months_between(x,y,exact=True) for x,y in \
zip(stage1c['Issue_Date'],stage1c['exp_period_end'])]

9

stage1c = stage1c[['PolID','first_date','monthaversary','exp_period_end', \
'Issue_Date']]

stage1c

PolID first_date monthaversary exp_period_end Issue_Date
20 2 2049-03-24 9.225806 2049-12-31 2049-03-24
21 2 2049-03-24 21.225806 2050-12-31 2049-03-24
22 2 2049-03-24 33.225806 2051-12-31 2049-03-24
23 2 2049-03-24 45.225806 2052-12-31 2049-03-24
35 3 2052-02-16 10.448276 2052-12-31 2052-02-16
...
11991 1000 2042-07-23 29.258065 2044-12-31 2042-07-23
11992 1000 2042-07-23 41.258065 2045-12-31 2042-07-23
11993 1000 2042-07-23 53.258065 2046-12-31 2042-07-23
11994 1000 2042-07-23 65.258065 2047-12-31 2042-07-23
11995 1000 2042-07-23 77.258065 2048-12-31 2042-07-23

[3618 rows x 5 columns]

Putting It All Together and Final Touches

Steps for this stage:

1. Concatenate the three pieces.
2. Ensure we have distinct records.
3. Order by policy ID and exposure period end.
4. Group by Policy ID.
5. Within policy ID, compute the exposure period start as the day after the prior record.
6. Within Policy ID, set null exposure starts to be the first date.
7. Compute policy duration and exact exposure.
8. Select the needed columns, and store.

R

rbind(
stage1a,
stage1b,
stage1c

) %>%

10

distinct() %>%
arrange({{.ID}}, exp_period_end) %>%
group_by({{.ID}}) %>%
mutate(exp_period_start=lag(exp_period_end) %m+% days(1),

.before=exp_period_end) %>%
mutate(exp_period_start=as.Date(ifelse(is.na(exp_period_start),

first_date,
exp_period_start))) %>%

mutate(pol_duration = pmax(1,ceiling(interval({{.issue_date}},exp_period_end) /
years(1))),

exposure = (interval(exp_period_start,exp_period_end) / days(1) + 1) /
ifelse(year(exp_period_end) %% 4 == 0, 366, 365)

) %>%
select({{.ID}},monthaversary,exp_period_start,exp_period_end,pol_duration,exposure) %>%
data.table() ->
.data

Python

exposures = (
pd.concat(
[stage1a,stage1b,stage1c]

).drop_duplicates()
.sort_values(['PolID','exp_period_end'])
).reset_index(drop=True)

exposures['exp_period_start'] = [d + relativedelta(days=1) \
for d in exposures['exp_period_end']]

exposures['exp_period_start'] = exposures.groupby('PolID')['exp_period_start'].shift(1)
exposures['exp_period_start'] = exposures['exp_period_start'].fillna(exposures['first_date'])

exposures['pol_duration'] = [np.ceil(months_between(x,y,exact=True)/12) for x,y in \
zip(exposures['Issue_Date'],exposures['exp_period_end'])]

exposures['pol_duration'] = exposures['pol_duration'].astype('int32')

exposures['exposure'] = \
exposures.apply(

lambda x: ((x['exp_period_end'] - x['exp_period_start']).days + 1)/ \

11

(366 if (x['exp_period_end'].year % 4 == 0) else 365),
axis=1)

exposures = exposures[['PolID','monthaversary','exp_period_start', \
'exp_period_end','pol_duration','exposure']]

exposures

PolID monthaversary ... pol_duration exposure
0 2 9.225806 ... 1 0.775342
1 2 12.000000 ... 1 0.224658
2 2 21.225806 ... 2 0.775342
3 2 24.000000 ... 2 0.224658
4 2 33.225806 ... 3 0.775342
...
7417 1000 60.000000 ... 5 0.556164
7418 1000 65.258065 ... 6 0.443836
7419 1000 72.000000 ... 6 0.557377
7420 1000 77.258065 ... 7 0.442623
7421 1000 78.000000 ... 7 0.063014

[7422 rows x 6 columns]

Final Build With R Function

The R function that I built can be run in parallel, and I have opted to run by issue year for
this example. In production, it might be better to run it by experience year.

Without parallelism, it will take several hours to develop the entire exposure set. Using 13
cores as I do here for each issue year, it takes about 12 minutes. This is why I opted not to
demonstrate this in Python in this document. Doing this in Python’s parallelism will work as
well (i.e., create a function and manually spawn processes, and so on).

source('expand.exposures.R')

cl <- makeCluster(13)
registerDoParallel(cl=cl)

policy_exposures <- foreach(i=2041:2053,.packages=c("data.table","tidyverse")) %dopar% {
policy_pop[Issue_Year==i] %>%

12

filter(Issue_Date <= study_end) %>%
select(PolID,Issue_Date,Term_Date,Prem_Mode_Months) %>%
expand_exposures(
.exp_period_start = study_start,
.exp_period_end = study_end,
.cal_yr_breaks = cal_yr_breaks,
.pol_period_granularity = pol_period_granularity,
.cal_period_granularity = cal_period_granularity,
.issue_date = Issue_Date,
.term_date = Term_Date,
.ID=PolID,
.prem_mode_months = Prem_Mode_Months

)
}

stopCluster(cl)

policy_exposures <- rbindlist(policy_exposures)

policy_exposures[,ID:=1:nrow(.SD)]

arrow::write_parquet(x=policy_exposures,
sink="policy_exposures.parquet")

policy_exposures

PolID monthaversary exp_period_start exp_period_end pol_duration
<int> <num> <Date> <Date> <num>

1: 30 4.354839 2041-08-20 2041-12-31 1
2: 30 12.000000 2042-01-01 2042-08-19 1
3: 30 16.354839 2042-08-20 2042-12-31 2
4: 30 24.000000 2043-01-01 2043-08-19 2
5: 30 28.354839 2043-08-20 2043-12-31 3

15990849: 1999958 10.225806 2053-02-24 2053-12-31 1
15990850: 1999977 10.161290 2053-02-26 2053-12-31 1
15990851: 1999984 6.967742 2053-06-01 2053-12-31 1
15990852: 1999993 8.870968 2053-04-04 2053-12-31 1
15990853: 2000000 0.000000 2053-03-08 2053-03-08 1

exposure ID
<num> <int>

1: 0.367123288 1

13

2: 0.632876712 2
3: 0.367123288 3
4: 0.632876712 4
5: 0.367123288 5

15990849: 0.852054795 15990849
15990850: 0.846575342 15990850
15990851: 0.586301370 15990851
15990852: 0.745205479 15990852
15990853: 0.002739726 15990853

Attaching Expected Claims

Attaching the expecting claims is once again a basic database operation.

1. Join the policy census with the exposures.
2. Join the expected basis for the event of interest, if the basis is in table form.
3. Compute derived quantities, and store.

After that, the information can be fed into reporting and analytics pipelines as needed.

policy_pop %>%
filter(UW_Decision != "DEC") %>%
inner_join(y=policy_exposures,

by="PolID") %>%
inner_join(

y=vbt2015,
by=join_by(
Sex==Sex,
Issue_Age==Issue_Age,
pol_duration==Duration

)
) %>%
mutate(ExpectedClaims_2015VBT_Count=exposure*-log(1-qx_su),

ExpectedClaims_2015VBT_Amount=ExpectedClaims_2015VBT_Count*Face_Amount) %>%
select(ID,ExpectedClaims_2015VBT_Count,ExpectedClaims_2015VBT_Amount)->
expected_claims

expected_claims

ID ExpectedClaims_2015VBT_Count ExpectedClaims_2015VBT_Amount

14

<int> <num> <num>
1: 12646805 1.163101e-04 11.6310093
2: 12646806 3.370116e-05 3.3701158
3: 12646807 1.318194e-04 13.1819424
4: 12646808 3.819503e-05 3.8195027
5: 12646809 2.016153e-04 20.1615252

15918397: 13740151 2.074082e-04 165.9265296
15918398: 13740152 1.111676e-04 88.9340419
15918399: 13740153 2.485927e-04 198.8741557
15918400: 13740154 1.300547e-04 104.0437685
15918401: 15990853 4.109897e-07 0.2054949

Session Information

R

sessionInfo()

R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0

locale:
[1] C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] openxlsx_4.2.5.2 reticulate_1.35.0 doParallel_1.0.17 iterators_1.0.14
[5] foreach_1.5.2 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1

15

[9] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[13] tibble_3.2.1 ggplot2_3.5.0 tidyverse_2.0.0 arrow_15.0.1
[17] data.table_1.15.2

loaded via a namespace (and not attached):
[1] utf8_1.2.4 generics_0.1.3 lattice_0.22-5 stringi_1.8.3
[5] hms_1.1.3 digest_0.6.35 magrittr_2.0.3 evaluate_0.23
[9] grid_4.3.3 timechange_0.3.0 fastmap_1.1.1 rprojroot_2.0.4
[13] Matrix_1.6-3 jsonlite_1.8.8 zip_2.3.1 fansi_1.0.6
[17] scales_1.3.0 codetools_0.2-19 cli_3.6.2 rlang_1.1.3
[21] bit64_4.0.5 munsell_0.5.0 withr_3.0.0 yaml_2.3.8
[25] tools_4.3.3 tzdb_0.4.0 colorspace_2.1-0 here_1.0.1
[29] assertthat_0.2.1 png_0.1-8 vctrs_0.6.5 R6_2.5.1
[33] lifecycle_1.0.4 bit_4.0.5 pkgconfig_2.0.3 pillar_1.9.0
[37] gtable_0.3.4 Rcpp_1.0.12 glue_1.7.0 xfun_0.42
[41] tidyselect_1.2.1 rstudioapi_0.15.0 knitr_1.45 htmltools_0.5.7
[45] rmarkdown_2.26 compiler_4.3.3

Python

session_info.show()

dateutil 2.8.2
numpy 1.23.5
pandas 2.0.3
pyarrow 14.0.1.dev0+gba5374836.d20240125
session_info 1.0.0

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35

Session information updated at 2024-04-25 13:52

16

	Setup
	R
	Python

	The Exposure Building Function
	R
	Python
	R
	Python
	Policy Mode-aversaries
	R
	Python

	Terminating Records
	R
	Python

	Calendar-Year Breaks
	R
	Python

	Putting It All Together and Final Touches
	R
	Python

	Final Build With R Function
	Attaching Expected Claims
	Session Information
	R
	Python

